
Chapitre 5

Calorimétrie

5.1 Transfert de chaleur comme fonction de V et p

Le transfert de chaleur infinitésimale δQ est exprimé comme fonction
des variables d’état T et V dans l’équation (5.4). Il est exprimé comme fonction
des variables d’état T et p dans l’équation (5.17). Exprimer ce transfert de
chaleur infinitésimale δQ comme fonction des variables d’état V et p.

5.2 Pompe à vélo

Une pompe à vélo prend un volume ∆V d’air à pression atmosphé-
rique p0 et température constante T0 et le compresse pour qu’il entre dans un
pneu de volume V0. L’air dans le pneu est initialement à pression atmosphé-
rique p0 et peut être considéré comme un gaz parfait. Déterminer le nombre n
de fois que l’utilisateur doit pomper de l’air dans le pneu pour atteindre une
pression pf . On suppose que la pompe est conçue de sorte que l’air dans le
pneu est toujours à température T0.

Application numérique

V0 = 50 l, ∆V = 1.2 l et pf = 2.5 p0.

5.3 Transfert de chaleur à pression constante

Un récipient rempli d’un gaz parfait est isolé thermiquement de l’en-
vironnement excepté pour un petit trou qui garantit que la pression à l’intérieur
du récipient est égale à la pression atmosphérique p0. Initialement, le récipient
contient Ni moles de gaz à température Ti. La chaleur spécifique molaire du
gaz à pression constante est cp. Le gaz est chauffé par une résistance électrique
dans le récipient jusqu’à une température finale Tf . Durant l’augmentation de
température du gaz, une partie du gaz sort du récipient par le petit trou. On
suppose que pour le gaz qui reste dans le récipient, le processus est réversible
est on néglige la chaleur spécifique de la résistance. Déterminer :



2 Calorimétrie

1) le volume V0 du récipient.

2) le nombre de moles ∆N qui sortent du récipient durant ce processus.

3) la chaleur Qif transférée durant ce processus.

Application numérique

p0 = 105 Pa, Ni = 10 moles, Ti = 273 K, cp = 29.1 J K−1 mol−1, Tf = 293 K.

5.4 Chaleur spécifique d’un métal

Un bloc métallique de masse M est amené à une température T0.
Il est alors plongé dans un calorimètre rempli d’une masse M ′ d’eau. Le sys-
tème constitué du bloc métallique et du calorimètre rempli d’eau est considéré
comme isolé. Durant ce processus, la température de l’eau augmente de Ti à Tf ,
la température d’équilibre. La chaleur spécifique de l’eau par unité de masse
est c∗M ′ . Déterminer la chaleur spécifique par unité de masse du métal c∗M en
fonction des températures utilisées dans cette expérience. Considérer que le
calorimètre est constitué d’un matériau de chaleur spécifique négligeable.

Application numérique

M = 0.5 kg, M ′ = 1 kg, T0 = 120◦C, Ti = 16◦C, Tf = 20◦C and c∗M ′ = 4187 J
kg−1 K−1.

5.5 Accroissement de la température lors d’un choc

Un solide de masse M est en chute libre d’une hauteur h. Il entre
en collision avec le sol et reste collé au sol après le choc. Durant le choc, on
suppose qu’il n’y a pas de déformation macroscopique du solide et qu’il n’y a
pas de transfert de chaleur entre le sol et le solide. Soit i l’état initial juste avant
la collision et f l’état final juste après la collision. Déterminer la variation de
température du solide ∆Tif durant le choc.

5.6 Mesure de la chaleur spécifique de l’eau

Des étudiants chauffent de l’eau avec un corps de chauffe électrique
constitué de N moles de fer. A l’aide d’un thermomètre, ils relèvent la tem-
pérature T (t) de l’eau et constatent qu’elle augmente linéairement en fonction
du temps,

T (t) = T0 + α t

où T0 est la température ambiante et α > 0 est une constante positive. La
puissance électrique du corps de chauffe est entièrement convertie en puissance
thermique PQ par effet Joule (sect. 11.4.11). On néglige l’expansion du volume
d’eau et on considère que la chaleur spécifique CV à volume constant de l’eau
est indépendante de la température.
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1) Déterminer l’expression de la chaleur spécifique CV à volume constant de
l’eau en fonction de la puissance thermique PQ du corps de chauffe et du
coefficient expérimental α en prenant en compte le fait que le corps de
chauffe doit aussi être chauffé.

2) Déterminer l’expression de la variation d’entropie ∆S de l’eau durant un
intervalle de temps ∆t en fonction de CV et α.

5.7 Travail en compression adiabatique

Un gaz parfait subit une compression adiabatique réversible d’un vo-
lume initial Vi et d’une pression initiale pi à une pression finale pf . Déterminer
le travail Wif effectué sur le gaz durant ce processus.

Application numérique

Vi = 1 l, pi = 5 · 105 Pa, pf = 2pi, c = 5/2 (définition (5.62)).

5.8 Pentes des processus isothermes et adiabatiques

Pour un gaz parfait, montrer qu’en tout point d’un diagramme de
Clapeyron (p, V ), la valeur absolue de la pente est plus grande pour un proces-
sus adiabatique (A) que pour un processus isotherme (I).

5.9 Echauffement de nanoparticules par adsorption

Le processus à l’aide duquel les molécules de gaz se lient à une surface
métallique est appelé adsorption. Ici, les molécules sont adsorbées sur des na-
noparticules de Pt. La chaleur spécifique d’une nanoparticule de Pt est CV . La
chaleur transférée à une nanoparticule de Pt moyenne durant l’adsorption de
molécules est Qif . Déterminer l’augmentation de température ∆Tif = Tf − Ti
d’une nanoparticule de Pt, en supposant qu’elle constitue un système adiaba-
tiquement fermé.

Application numérique

CV = 1.4 · 10−18 J K−1, Qif = 6.5 · 10−16 J.
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5.10 Coefficients calorimétriques

La réponse thermique d’un système homogène qui subit un trans-
fert de chaleur infinitésimal δQ est caractérisée par des coefficients définis par
les équations (5.4) et (5.17) lorsque les variables d’état (T, V ) ou (T, p) sont
utilisées.

1) Etablir une relation entre la chaleur latente d’expansion LV (T, V ) et la
chaleur latente de compression Lp (T, p).

2) Etablir une relation entre la chaleur latente de compression Lp (T, p) et
les chaleurs spécifique à volume constant CV (T, V ) et à pression constante
Cp (T, p).

5.11 Trois cylindres

Trois cylindres i (où i = 1, 2, 3) de sections identiques A contiennent
N moles de gaz parfait (fig. 5.1). Les cylindres sont fixés sur une table qui assure
un contact thermique entre eux. Le système est maintenu à une température T
constante. Les pistons qui contiennent le gaz dans chaque cylindre sont montés
sur un levier. La masse du levier et les échanges de chaleur entre le gaz et le
dispositif mécanique sont négligeables.

Fig. 5.1 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer la norme Fi de la force exercée par le i e piston sur le levier par
l’intermédiaire de la barre verticale.

2) En appliquant un principe de mécanique générale, lorsque que le levier est
en position horizontale, établir la condition d’équilibre pour les pressions
pi.

3) Déterminer la relation liant les variations infinitésimales de volume dVi
imposées par le levier.

4) Déterminer la variation infinitésimale d’énergie interne dU du système lors
d’un mouvement infinitésimal de levier.
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5) Déterminer la variation infinitésimale d’entropie dS du système lors d’un
mouvement infinitésimal de levier à l’aide de la condition d’équilibre pour
les pressions.




